Fotonaponska ploča Tehnologija

Fotonaponska ploča ili solarni panel se sastoji od grupe sunčevih ćelija (fotonaponska ćelija), kojih je najčešće oko 36, serijski povezanih, stvarajući module nominalnog napona od 12 V.
Svaki pojedini fotoelektrični članak ima maksimalni izlazni napon od 600 do 700 mV, pa se fotoelektrični članci serijski povezuje stvarajući module nominalnog napona od 12 V. Snaga koju proizvodi jedan fotonaponski članak je relativno mali, pa se u praksi više članaka povezuju u grupu čime se formira fotonaponska ćelija, a više fotonaponskih ćelija čini jedan fotonaponski modul ili solarni panel ili fotonaponsku ploču. Kada se poveže više sunčevih panela dobije se polje fotonaponskih ploča, koji je dio solarne fotonaponske elektrane. [1] Energija Sunčevog zračenja koja dospije na Zemlju 10 000 puta je veća od energije potrebne da zadovolji potrebe čovečanstva, u razdoblju od jedne godine. Kada bi se promatralo da na jednom četvornom metru dospije 100 kWh godišnje, bilo bi potrebno prekriti površinu od 150 x 150 km2 da bi se dobila energija jednaka potrošnji za godinu dana (podatak iz 2001.). Danas se sve više počinje sa primjenom sunčevih fotonaponskih elektrana u industrijske svrhe, čak i u onim državama koje su bogate naftom. Čak je i Vatikan ugradio 2400 - 2700 fotonaponskih ploča na svojim krovovima, pri čemu će spriječiti emisiju CO2 od 210 tona ili potrošnju 70 tona lož ulja za samo dva tjedna potrošnje.
Način rada fotonaponskih ploča
Polikristalna silicijeva fotonaponska ploča.
Fotonaponska ploča napravljena je tako da se, kada je osvijetlimo, na njezinim krajevima javlja elektromotorna sila (napon). Kada se fotonaponska ploča (PN-spoj) osvijetli, apsorbirani fotoni proizvode parove elektron - šupljina. Ako apsorpcija nastane daleko od PN-spoja, nastali par ubrzo se rekombinira. Međutim, nastane li apsorpcija unutar ili u blizini PN-spoja, unutrašnje električno polje, koje postoji u osiromašenom području, odvaja nastali elektron i šupljinu – elektron se giba prema N - strani, šupljina prema P - strani. Takvo skupljanje elektrona i šupljina na odgovarajućim stranama PN - spoja uzrokuje elektromotornu silu na krajevima ćelije. Kada se ćelija osvijetli, kontakt na P - dijelu postaje pozitivan, a na N - dijelu negativan. Ako su kontakti ćelije spojeni s vanjskim trošilom, poteći će električna struja. Kada je fotonaponska ploča spojena s vanjskim trošilom i osvijetljena, u ploči će zbog fotonapona nastajati fotostruja, te će vanjskim trošilom teći električna struja, jednaka razlici struje diode i fotostruje.
Građa silicijeve fotonaponske ploče
Pomoću fotoefekta može se sunčeva energija izravno pretvoriti u električnu u fotonaponskim pločama. Kada fotonaponska ploča apsorbira sunčevo zračenje, fotoefektom se na njezinim krajevima proizvede elektromotorna sila i fotonaponska ćelija postaje izvor električne energije. Fotonaponska ćelija je PN - spoj (dioda). U silicijskoj fotonaponskoj ćeliji na površini pločice P - tipa silicija ubačene su primjese npr. fosfor, tako da na tankom površinskom sloju nastane područje N - tipa poluvodiča. Da bi se skupili naboji nastali apsorpcijom fotona iz sunčeva zračenja, na prednjoj površini nalazi se metalna rešetka, a stražnja strana je prekrivena metalnim kontaktom. Rešetkasti kontakt na prednjoj strani načinjen je tako da ne prekrije više od 5 % površine, te on gotovo i ne utječe na apsorpciju sunčeva zračenja. Prednja površina ćelije može biti prekrivena i prozirnim antirefleksijskim slojem koji smanjuje refleksiju sunčeve svjetlosti i tako povećava djelotvornost ćelije.
Vrste fotonaponskih ploča
Fotonaponske ploče iz silicija se izvode u više morfoloških oblika kao monokristalne, polikristalne i amorfne.
Monokristalne Si ploče
Ovaj tip ploče može pretvoriti 1000 W/m2 sunčevog zračenja u 140 W električne energije, s površinom ploče od 1 m2. Za proizvodnju monokristalnih Si ćelija potreban je apsolutno čisti poluvodički materijal. Monokristalni štapići se izvade iz rastaljenog silicija i režu na tanke pločice. Takav način izrade omogućuje relativno visoki stupanj iskorištenja. [5]
Polikristalne Si ploče
Ovaj tip ploče može pretvoriti 1000 W/m2 sunčevog zračenja u 130 W električne energije s površinom ploče od 1 m2. Proizvodnja ovih ploča je ekonomski efikasnija u odnosu na monokristalne. Tekući silicij se ulijeva u blokove koji se zatim režu u ploče. Tijekom skrućivanja materijala stvaraju se kristalne strukture različitih veličina, na čijim granicama se pojavljuju greške, pa zbog tog razloga sunčeva fotonaponska ćelija ima manji stupanj iskorištenja.
Amorfne Si ploče
Ovaj tip ploče može pretvoriti 1000 W/m2 sunčevog zračenja u 50 W električne energije s površinom ćelija od 1 m2. Ukoliko se tanki film silicija stavi na staklo ili neku drugu podlogu, to se naziva amorfna ili tankoslojna ćelija. Debljina sloja iznosi manje od 1 μm, stoga su troškovi proizvodnje manji u skladu sa niskom cijenom materijala. Međutim stupanj iskorištenja amorfnih ćelija je puno niža u usporedbi s drugim tipovima ćelija. Prvenstveno se koristi u opremi gdje je potrebna mala snaga (satovi, džepna računala) ili kao element fasade na zgradama. [6]
Galij arsenidne GaAs ploče
Galij arsenid je poluvodič napravljen iz mješavine galija Ga i arsena As. Pogodan je za upotrebu u višeslojnim i visoko učinkovitim pločama. Širina zabranjene vrpce (engl. band gap) je pogodna za jednoslojne sunčeve ćelije. Ima visoku apsorpciju, pa je potrebna debljina od samo nekoliko mikrometara da bi apsorbirao sunčeve zrake. Relativno je neosjetljiv na toplinu u usporedbi sa silicijevim pločama, te na zračenja. Zbog visoke cijene koristi se u svemirskim programima i u sustavima s koncentriranim zračenjem, gdje se štedi na ćelijama. Projekti koncentriranog zračenja su još u razdoblju istraživanja. Galij indijum fosfidna/galij arsenid (GaInP)/GaAs dvoslojna ćelija ima stupanj iskorištenja od 30% i koristi se u komercijalne svrhe za svemirske aplikacije. Ovaj tip ploče može pretvoriti 1000 W/m2 sunčevog zračenja u 300 W električne energije sa površinom ćelija od 1 m2.
Kadmij telurijeve CdTe ploče
Ovaj tip ploče može pretvoriti 1000 W/m2 sunčevog zračenja u 160 W električne energije sa površinom ploče od 1 m2 u labaratorijskim uvjetima. Kadmij teleurid je spoj elementa: metala kadmija i polumetala telurija. Pogodan za upotrebu u tankim fotonaponskim modulima zbog fizikalnih svojstava i jeftinih tehnologija izrade. Usprkos navedenim prednostima zbog kadmijeve otrovnosti i sumnje na kancerogenost nije u širokoj upotrebi.
Primjena fotonaponskih ploča
Područje primjene fotonaponskih ploča je ograničeno s relativno malom snagom po četvornom metru ploče. Tehničkim rješenjima možemo oblikovati ploču s naglaskom na naponu ili jakosti struje po četvornom metru. S obzirom na međusobnu zavisnost P = U * I postoji idealna radna točka kada je taj umnožak najveći, odnosno Pmax za zadano osvjetljenje, tako da postoje sustavi regulacije koji osiguravaju Pmax. Svoju trenutačno najrašireniju primjenu ostvaruje kao izvor napajanja za elektroničku opremu, prvenstveno pri svemirskim istraživanjima. Fotonaponski sustavi s baterijom za skladištenje energije je jednostavan i pouzdan samostalan sustav, često najprikladniji kada su ostali izvori električne energije nepristupačni, nepoželjni ili preskupi. [7]
Tipične primjene su:
- opskrba električnom energijom udaljenih domova i gospodarstava
- primjene u telekomunikaciji – udaljene repetitorske instalacije
- katodna zaštita cjevovoda
- navodnjavanje
Veličine ovakvih sustava su 10 W do 10 kW vršne snage. Sustav od 10 kW vršne snage obično se sastoji od 100 m2 sunčevih ploča.
Prednosti upotrebe fotonaponskih sustava
Tehnologija fotonaponskih sustava je dokazana u komercijalnim svrhama, a prednosti su joj:
- visoka pouzdanost
- niski troškovi rada i najekonomičniji izvor energije
- minimalna potreba za održavanjem i bez potrebe za nadolijevanjem bilo kakvog goriva
- najbolji gradski obnovljivi izvor energije
- jednostavna mehanika, nema pokretnih dijelova koji su potrebni za rad sustava
- primjenjivost sustava praktički bilo gdje na Zemlji
- ne buče i ne zagađuju okoliš
- pružaju mogućnost uvođenja električne energije na mjestima gdje bi to inače bilo preskupo ili čak neizvodivo.

09.07.2015.
21105 
Najnovije
Popularno
Komentari















